Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Emerg Infect Dis ; 27(10): 2711-2714, 2021 10.
Article in English | MEDLINE | ID: mdl-34545800

ABSTRACT

Oropouche fever is a zoonotic dengue-like syndrome caused by Oropouche virus. In August-September 2020, dengue-like syndrome developed in 41 patients in a remote rainforest village in French Guiana. By PCR or microneutralization, 23 (82.1%) of 28 tested patients were positive for Oropouche virus, documenting its emergence in French Guiana.


Subject(s)
Bunyaviridae Infections , Orthobunyavirus , Bunyaviridae Infections/epidemiology , Disease Outbreaks , French Guiana/epidemiology , Humans , Orthobunyavirus/genetics
2.
Malar J ; 17(1): 431, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30453973

ABSTRACT

Following publication of the original article [1], one of the authors flagged that the images for Figs. 2 and 3 were swapped in the published article-Fig. 2 had the image meant for Fig. 3 and vice versa.

3.
Malar J ; 17(1): 381, 2018 Oct 22.
Article in English | MEDLINE | ID: mdl-30348161

ABSTRACT

BACKGROUND: Malaria remains a challenge in Solomon Islands, despite government efforts to implement a coordinated control programme. This programme resulted in a dramatic decrease in the number of cases and mortality however, malaria incidence remains high in the three most populated provinces. Anopheles farauti is the primary malaria vector and a better understanding of the spatial patterns parasite transmission is required in order to implement effective control measures. Previous entomological studies provide information on the ecological preferences of An. farauti but this information has never before been gathered and "translated" in useful tools as maps that provide information at both the national level and at the scale of villages, thus enabling local targeted control measures. METHODS: A literature review and consultation with entomology experts were used to determine and select environmental preferences of An. farauti. Remote sensing images were processed to translate these preferences into geolocated information to allow them to be used as the basis for a Transmission Suitability Index (TSI). Validation was developed from independent previous entomological studies with georeferenced locations of An. farauti. Then, TSI was autoscaled to ten classes for mapping. RESULTS: Key environmental preferences for the An. farauti were: distance to coastline, elevation, and availability of water sources. Based on these variables, a model was developed to provide a TSI. This TSI was developed using GIS and remote sensing image processing, resulting in maps and GIS raster layer for all the eight provinces and Honiara City at a 250 m spatial resolution. For a TSI ranging from 0 as not suitable to 13 as most suitable, all the previous collections of An. farauti had mean TSI value between 9 and 11 and were significantly higher than where the vector was searched for and absent. Resulting maps were provided after autoscaling the TSI into ten classes from 0 to 9 for visual clarity. CONCLUSIONS: The TSI model developed here provides useful predictions of likely malaria transmission larval sources based on the environmental preferences of the mosquito, An. farauti. These predictions can provide sufficient lead-time for agencies to target malaria prevention and control measures and can assist with effective deployment of limited resources. As the model is built on the known environmental preferences of An. farauti, the model should be completed and updated as soon as new information is available. Because the model did not include any other malaria transmission factors such as care availability, diagnostic time, treatment, prevention, and entomological parameters other than the ecological preferences neither, our suitability mapping represents the upper bound of transmission areas. The results of this study can now being used as the basis of a malaria monitoring system which has been jointly implemented by the Solomon Islands National Vector Borne Disease Control Programme, the Solomon Islands Meteorological Services and the Australian Bureau of Meteorology. The TSI model development method can be applied to other regions of the world where this mosquito occurs and could be adapted for other species.


Subject(s)
Animal Distribution , Anopheles/physiology , Communicable Disease Control/methods , Malaria/transmission , Mosquito Control/methods , Mosquito Vectors/physiology , Plasmodium/physiology , Animals , Anopheles/growth & development , Geographic Information Systems , Geographic Mapping , Humans , Larva/physiology , Melanesia , Mosquito Vectors/growth & development
4.
Emerg Microbes Infect ; 7(1): 68, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29691362

ABSTRACT

Understanding Zika virus infection dynamics is essential, as its recent emergence revealed possible devastating neuropathologies in humans, thus causing a major threat to public health worldwide. Recent research allowed breakthrough in our understanding of the virus and host pathogenesis; however, little is known on its impact on its main vector, Aedes aegypti. Here we show how Zika virus targets Aedes aegypti's neurons and induces changes in its behavior. Results are compared to dengue virus, another flavivirus, which triggers a different pattern of behavioral changes. We used microelectrode array technology to record electrical spiking activity of mosquito primary neurons post infections and discovered that only Zika virus causes an increase in spiking activity of the neuronal network. Confocal microscopy also revealed an increase in synapse connections for Zika virus-infected neuronal networks. Interestingly, the results also showed that mosquito responds to infection by overexpressing glutamate regulatory genes while maintaining virus levels. This neuro-excitation, possibly via glutamate, could contribute to the observed behavioral changes in Zika virus-infected Aedes aegypti females. This study reveals the importance of virus-vector interaction in arbovirus neurotropism, in humans and vector. However, it appears that the consequences differ in the two hosts, with neuropathology in human host, while behavioral changes in the mosquito vector that may be advantageous to the virus.


Subject(s)
Aedes/physiology , Behavior, Animal , Neurons/virology , Viral Tropism , Aedes/virology , Animals , Dengue Virus/physiology , Electrophysiological Phenomena , Female , Glutamic Acid/genetics , Humans , Microelectrodes , Microscopy, Confocal , Mosquito Vectors/virology , Nerve Net/virology , Neurons/physiology , Neurons/ultrastructure , Synapses/ultrastructure , Synapses/virology , Zika Virus/physiology , Zika Virus Infection/virology
5.
Malar J ; 16(1): 472, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29162098

ABSTRACT

BACKGROUND: Malaria control remains a significant challenge in the Solomon Islands. Despite progress made by local malaria control agencies over the past decade, case rates remain high in some areas of the country. Studies from around the world have confirmed important links between climate and malaria transmission. This study focuses on understanding the links between malaria and climate in Guadalcanal, Solomon Islands, with a view towards developing a climate-based monitoring and early warning for periods of enhanced malaria transmission. METHODS: Climate records were sourced from the Solomon Islands meteorological service (SIMS) and historical malaria case records were sourced from the National Vector-Borne Disease Control Programme (NVBDCP). A declining trend in malaria cases over the last decade associated with improved malaria control was adjusted for. A stepwise regression was performed between climate variables and climate-associated malaria transmission (CMT) at different lag intervals to determine where significant relationships existed. The suitability of these results for use in a three-tiered categorical warning system was then assessed using a Mann-Whitney U test. RESULTS: Of the climate variables considered, only rainfall had a consistently significant relationship with malaria in North Guadalcanal. Optimal lag intervals were determined for prediction using R2 skill scores. A highly significant negative correlation (R = - 0.86, R2 = 0.74, p < 0.05, n = 14) was found between October and December rainfall at Honiara and CMT in northern Guadalcanal for the subsequent January-June. This indicates that drier October-December periods are followed by higher malaria transmission periods in January-June. Cross-validation emphasized the suitability of this relationship for forecasting purposes [Formula: see text]  as did Mann-Whitney U test results showing that rainfall below or above specific thresholds was significantly associated with above or below normal malaria transmission, respectively. CONCLUSION: This study demonstrated that rainfall provides the best predictor of malaria transmission in North Guadalcanal. This relationship is thought to be underpinned by the unique hydrological conditions in northern Guadalcanal which allow sandbars to form across the mouths of estuaries which act to develop or increase stagnant brackish marshes in low rainfall periods. These are ideal habitats for the main mosquito vector, Anopheles farauti. High rainfall accumulations result in the flushing of these habitats, reducing their viability. The results of this study are now being used as the basis of a malaria early warning system which has been jointly implemented by the SIMS, NVBDCP and the Australian Bureau of Meteorology.


Subject(s)
Anopheles/physiology , Climate Change , Climate , Environmental Monitoring/methods , Malaria/prevention & control , Mosquito Vectors/physiology , Animals , Melanesia
6.
Malar J ; 15: 314, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27277707

ABSTRACT

BACKGROUND: Urbanization in African cities has major impact on malaria risk. Niamey, the capital of the Republic of Niger, is situated in the West African Sahel zone. The short rainy season and human activities linked with the Niger River influence mosquito abundance. This study aimed at deciphering the factors of distribution of urban malaria vectors in Niamey. METHODS: The distribution of mosquito aquatic stages was investigated monthly from December 2002 to November 2003, at up to 84 breeding sites, throughout Niamey. An exploratory analysis of association between mosquito abundance and environmental factors was performed by a Principal Component Analysis and confirmed by Kruskall-Wallis non-parametric test. To assess the relative importance of significant factors, models were built for Anopheles and Culicinae. In a second capture session, adult mosquitoes were collected weekly with pyrethrum sprays and CDC light-traps from June 2008 to June 2009 in two differentiated urban areas chosen after the study's first step. Members of the Anopheles gambiae complex were genotyped and Anopheles females were tested for the presence of Plasmodium falciparum circumsporozoite antigens using ELISA. RESULTS: In 2003, 29 % of 8420 mosquitoes collected as aquatic stages were Anopheles. They were significantly more likely to be found upstream, relatively close to the river and highly productive in ponds. These factors remained significant in regression and generalized linear models. The Culicinae were found significantly more likely close to the river, and in the main temporary affluent stream. In 2009, Anopheles specimens, including Anopheles gambiae s.l. (95 %), but also Anopheles funestus (0.6 %) accounted for 18 % of the adult mosquito fauna, with a large difference between the two sampled zones. Three members of the An. gambiae complex were found: Anopheles arabiensis, Anopheles coluzzii, and An. gambiae. Nineteen (1.3 %) out of 1467 females tested for P. falciparum antigen were found positive. CONCLUSION: The study provides valuable update knowledge on malaria vector ecology and distribution in Niamey. The identification of spatial and environmental risk factors could pave the way to larval source management strategy and allow malaria vector control to focus on key zones for the benefit of the community.


Subject(s)
Anopheles/growth & development , Anopheles/parasitology , Ecosystem , Mosquito Vectors/growth & development , Mosquito Vectors/parasitology , Animals , Ecology , Environment , Enzyme-Linked Immunosorbent Assay , Female , Humans , Malaria, Falciparum , Niger , Plasmodium falciparum/isolation & purification , Population Density , Protozoan Proteins/analysis
7.
PLoS Negl Trop Dis ; 8(11): e3325, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25412443

ABSTRACT

Arthropod-borne viruses are a major cause of emerging disease with significant public health and economic impacts. However, the factors that determine their activity and seasonality are not well understood. In Australia, a network of sentinel cattle herds is used to monitor the distribution of several such viruses and to define virus-free regions. Herein, we utilize these serological data to describe the seasonality, and its drivers, of three economically important animal arboviruses: bluetongue virus, Akabane virus and bovine ephemeral fever virus. Through epidemiological time-series analyses of sero-surveillance data of 180 sentinel herds between 2004-2012, we compared seasonal parameters across latitudes, ranging from the tropical north (-10°S) to the more temperate south (-40°S). This analysis revealed marked differences in seasonality between distinct geographic regions and climates: seasonality was most pronounced in southern regions and gradually decreased as latitude decreased toward the Equator. Further, we show that both the timing of epidemics and the average number of seroconversions have a strong geographical component, which likely reflect patterns of vector abundance through co-varying climatic factors, especially temperature and rainfall. Notably, despite their differences in biology, including insect vector species, all three viruses exhibited very similar seasonality. By revealing the factors that shape spatial and temporal distributions, our study provides a more complete understanding of arbovirus seasonality that will enable better risk predictions.


Subject(s)
Arbovirus Infections/epidemiology , Arbovirus Infections/virology , Arboviruses , Cattle Diseases/epidemiology , Cattle Diseases/virology , Animals , Arbovirus Infections/immunology , Arbovirus Infections/veterinary , Australia/epidemiology , Cattle , Cattle Diseases/immunology , Insect Vectors , Seasons , Sentinel Surveillance
8.
Malar J ; 9: 108, 2010 Apr 22.
Article in English | MEDLINE | ID: mdl-20409349

ABSTRACT

BACKGROUND: Malaria microscopy and rapid diagnostic tests are insensitive for very low-density parasitaemia. This insensitivity may lead to missed asymptomatic sub-microscopic parasitaemia, a potential reservoir for infection. Similarly, mixed infections and interactions between Plasmodium species may be missed. The objectives were first to develop a rapid and sensitive PCR-based diagnostic method to detect low parasitaemia and mixed infections, and then to investigate the epidemiological importance of sub-microscopic and mixed infections in Rattanakiri Province, Cambodia. METHODS: A new malaria diagnostic method, using restriction fragment length polymorphism analysis of the cytochrome b genes of the four human Plasmodium species and denaturing high performance liquid chromatography, has been developed. The results of this RFLP-dHPLC method have been compared to 1) traditional nested PCR amplification of the 18S rRNA gene, 2) sequencing of the amplified fragments of the cytochrome b gene and 3) microscopy. Blood spots on filter paper and Giemsa-stained blood thick smears collected in 2001 from 1,356 inhabitants of eight villages of Rattanakiri Province have been analysed by the RFLP-dHPLC method and microscopy to assess the prevalence of sub-microscopic and mixed infections. RESULTS: The sensitivity and specificity of the new RFLP-dHPLC was similar to that of the other molecular methods. The RFLP-dHPLC method was more sensitive and specific than microscopy, particularly for detecting low-level parasitaemia and mixed infections. In Rattanakiri Province, the prevalences of Plasmodium falciparum and Plasmodium vivax were approximately two-fold and three-fold higher, respectively, by RFLP-dHPLC (59% and 15%, respectively) than by microscopy (28% and 5%, respectively). In addition, Plasmodium ovale and Plasmodium malariae were never detected by microscopy, while they were detected by RFLP-dHPLC, in 11.2% and 1.3% of the blood samples, respectively. Moreover, the proportion of mixed infections detected by RFLP-dHPLC was higher (23%) than with microscopy (8%). CONCLUSIONS: The rapid and sensitive molecular diagnosis method developed here could be considered for mass screening and ACT treatment of inhabitants of low-endemicity areas of Southeast Asia.


Subject(s)
Malaria/diagnosis , Parasitemia/diagnosis , Plasmodium/classification , Plasmodium/isolation & purification , Polymerase Chain Reaction/methods , Cambodia , Chromatography, High Pressure Liquid , Cross-Sectional Studies , Cytochromes b/genetics , Female , Humans , Malaria/genetics , Malaria/parasitology , Male , Microscopy , Molecular Sequence Data , Parasitemia/genetics , Plasmodium/genetics , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 18S/genetics , Sensitivity and Specificity , Sequence Analysis, DNA , Species Specificity
9.
Vaccine ; 25 Suppl 1: A12-7, 2007 Sep 03.
Article in English | MEDLINE | ID: mdl-17517453

ABSTRACT

Epidemics of meningococcal meningitis in Africa have plagued the continent for over a century. These epidemics have a strong association with the environment and efforts are being made to develop models to predict both their location and their incidence. This review describes the predictive models based on climate/environmental information currently available, describes work in progress, and presents evidence that the distribution of the epidemics is changing in a pattern that is compatible with changes in the environment. Discussion of priorities for research in the context of the new conjugate vaccines in Africa is also provided.


Subject(s)
Disease Outbreaks , Meningitis, Meningococcal/epidemiology , Africa/epidemiology , Climate , Geography , Humans , Risk Factors
10.
Clin Infect Dis ; 44(5): 657-63, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17278055

ABSTRACT

BACKGROUND: In Niger, epidemic meningococcal meningitis is primarily caused by Neisseria meningitidis (Nm) serogroup A. However, since 2002, Nm serogroup W135 has been considered to be a major threat that has not yet been realized, and an unprecedented incidence of Nm serogroup X (NmX) meningitis was observed in 2006. METHODS: Meningitis surveillance in Niger is performed on the basis of reporting of clinically suspected cases. Cerebrospinal fluid specimens are sent to the reference laboratory in Niamey, Niger. Culture, latex agglutination, and polymerase chain reaction are used whenever appropriate. Since 2004, after the addition of a polymerase chain reaction-based nonculture assay that was developed to genogroup isolates of NmX, polymerase chain reaction testing allows for the identification of Nm serogroup A, Nm serogroup B, Nm serogroup C, NmX, Nm serogroup Y, and Nm serogroup W135. RESULTS: From January to June 2006, a total of 4185 cases of meningitis were reported, and 2905 cerebrospinal fluid specimens were laboratory tested. NmX meningitis represented 51% of 1139 confirmed cases of meningococcal meningitis, but in southwestern Niger, it represented 90%. In the agglomeration of Niamey, the reported cumulative incidence of meningitis was 73 cases per 100,000 population and the cumulative incidence of confirmed NmX meningitis was 27.5 cases per 100,000 population (74.6 cases per 100,000 population in children aged 5-9 years). NmX isolates had the same phenotype (X : NT : P1.5), and all belonged to the same sequence type (ST-181) as the NmX isolates that were circulating in Niamey in the 1990s. Nm serogroup W135 represented only 2.1% of identified meningococci. CONCLUSIONS: This is, to our knowledge, the first report of such a high incidence of NmX meningitis, although an unusually high incidence of NmX meningitis was also observed in the 1990s in Niamey. The increasing incidence of NmX meningitis is worrisome, because no vaccine has been developed against this serogroup. Countries in the African meningitis belt must prepare to face this potential new challenge.


Subject(s)
Meningitis, Meningococcal/epidemiology , Neisseria meningitidis/classification , Disease Outbreaks , Humans , Incidence , Meningitis, Meningococcal/microbiology , Neisseria meningitidis/genetics , Neisseria meningitidis/isolation & purification , Niger/epidemiology , Serotyping
11.
Int J Health Geogr ; 6: 2, 2007 Jan 29.
Article in English | MEDLINE | ID: mdl-17261177

ABSTRACT

BACKGROUND: The highlands of Madagascar present an unstable transmission pattern of malaria. The population has no immunity, and the central highlands have been the sites of epidemics with particularly high fatality. The most recent epidemic occurred in the 1980s, and caused about 30,000 deaths. The fight against malaria epidemics in the highlands has been based on indoor insecticide spraying to control malaria vectors. Any preventive programme involving generalised cover in the highlands will require very substantial logistical support. We used multicriteria evaluation, by the method of weighted linear combination, as basis for improved targeting of actions by determining priority zones for intervention. RESULTS: Image analysis and field validation showed the accuracy of mapping rice fields to be between 82.3% and 100%, and the Kappa coefficient was 0.86 to 0.99.A significant positive correlation was observed between the abundance of the vector Anopheles funestus and temperature; the correlation coefficient was 0.599 (p < 0.001). A significant negative correlation was observed between vector abundance and human population density: the correlation coefficient was -0.551 (p < 0.003). Factor weights were determined by pair-wise comparison and the consistency ratio was 0.04. Risk maps of the six study zones were obtained according to a gradient of risk. Nine of thirteen results of alert confirmed by the Epidemiological Surveillance Post were in concordance with the risk map. CONCLUSION: This study is particularly valuable for the management of vector control programmes, and particularly the reduction of the vector population with a view to preventing disease. The risk map obtained can be used to identify priority zones for the management of resources, and also help avoid systematic and generalised spraying throughout the highlands: such spraying is particularly difficult and expensive. The accuracy of the mapping, both as concerns time and space, is dependent on the availability of data. Continuous monitoring of malaria transmission factors must be undertaken to detect any changes. A regular case notification allows risk map to be verified. These actions should therefore be implemented so that risk maps can be satisfactorily assessed.


Subject(s)
Decision Support Techniques , Insecticides , Malaria/prevention & control , Mosquito Control/methods , Topography, Medical , Animals , Anopheles , Crops, Agricultural , Humans , Insect Vectors , Madagascar , Oryza , Risk Factors
12.
Vaccine ; 24(18): 3984-9, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16540214

ABSTRACT

Low measles vaccination coverage (VC) leads to recurrent epidemics in many African countries. We describe VC before and after late reinforcement of vaccination activities during a measles epidemic in Niamey, Niger (2003-2004) assessed by Lot Quality Assurance Sampling (LQAS). Neighborhoods of Niamey were grouped into 46 lots based on geographic proximity and population homogeneity. Before reinforcement activities, 96% of lots had a VC below 70%. After reinforcement, this proportion fell to 78%. During the intervention 50% of children who had no previous record of measles vaccination received their first dose (vaccination card or parental recall). Our results highlight the benefits and limitations of vaccine reinforcement activities performed late in the epidemic.


Subject(s)
Immunization Programs , Measles Vaccine/administration & dosage , Measles/epidemiology , Measles/prevention & control , Quality Assurance, Health Care , Vaccination , Child, Preschool , Health Care Surveys , Humans , Infant , Niger/epidemiology , Reinforcement, Psychology , Sampling Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...